一、红黑树简介
红黑树的规则有
1.每个节点不是红色就是黑色
2.根节点是黑色
3.如果一个节点是红色,它的两个孩子节点是黑色
4.每条路径都有相同数量的黑色节点
5.叶子节点(Nullptr节点)是黑的
这些规则可以推导出红黑树的特性
其最长路径不超过最短路径的两倍,近似平衡
没有连续的红节点
左右子树的黑节点个数相同
其相较于AVL树并没有过多的旋转
用较不平衡换取了性能
在实际中,红黑树的应用相较于AVL树更加常用
二、红黑树的模拟实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
| #pragma once #include<iostream> using namespace std;
enum Color { Red, Black };
template<class K, class V> struct RBTreeNode { RBTreeNode* _left; RBTreeNode* _right; RBTreeNode* _parent;
Color _col; pair<K, V> _kv;
RBTreeNode(const pair<K, V>& kv) :_left(nullptr) , _right(nullptr) , _parent(nullptr) , _col(Red) , _kv(kv) {} };
template<class K, class V> class RBTree { typedef RBTreeNode<K, V> Node; public: bool Insert(const pair<K, V>& kv) { if (_root == nullptr) { _root = new Node(kv); _root->_col = Black; return true; }
Node* cur = _root; Node* parent = nullptr; while (cur) {
if (cur->_kv.first > kv.first) { parent = cur; cur = cur->_left; } else if (cur->_kv.first < kv.first) { parent = cur; cur = cur->_right; } else { return false; } } cur = new Node(kv); if (cur->_kv.first > parent->_kv.first) parent->_right = cur; else parent->_left = cur; cur->_parent = parent;
while (parent && parent->_col == Red) { Node* grandpa = parent->_parent;
if (grandpa->_left == parent) { Node* uncle = grandpa->_right; if (uncle && uncle->_col == Red) { parent->_col = uncle->_col = Black; grandpa->_col = Red;
cur = grandpa; grandpa = cur->_parent; }
else { if (cur == parent->_right) { RotateL(parent); swap(parent, cur); } RotateR(grandpa); parent->_col = Black; grandpa->_col = Red; } break; } else { Node* uncle = grandpa->_left; if (uncle && uncle->_col == Red) { parent->_col = uncle->_col = Black; grandpa->_col = Red;
cur = grandpa; grandpa = cur->_parent; } else { if (cur == parent->_left) { RotateR(parent); swap(parent, cur); } RotateL(grandpa); grandpa->_col = Red; parent->_col = Black; } break; } } _root->_col = Black; return true; }
void Print() { _Print(_root); }
bool Inspect() { return _Inspect(_root); }
private: Node* _root = nullptr;
void _Print(Node*& cur) { if (cur == nullptr) return; _Print(cur->_left); cout << cur->_kv.first << " "; _Print(cur->_right); }
void RotateL(Node*& parent) { Node* pparent = parent->_parent; Node* subR = parent->_right; Node* subRL = subR->_left; if (pparent == nullptr) { _root = subR; subR->_parent = nullptr; } else { if (pparent->_left == parent) pparent->_left = subR; else pparent->_right = subR; subR->_parent = pparent; } parent->_parent = subR; subR->_left = parent; parent->_right = subRL; if (subRL != nullptr) subRL->_parent = parent; }
void RotateR(Node*& parent) { Node* pparent = parent->_parent; Node* subL = parent->_left; Node* subLR = subL->_right; if (pparent == nullptr) { _root = subL; subL->_parent = nullptr; } else { if (pparent->_left == parent) pparent->_left = subL; else pparent->_right = subL; subL->_parent = pparent; } parent->_parent = subL; subL->_right = parent; parent->_left = subLR; if (subLR != nullptr) subLR->_parent = parent; }
bool check(Node* root, size_t& reference, size_t num) { if (root == nullptr) { if (num != reference) { cout << "路径长度有问题" << endl; return false; } return true; }
if (root->_col == Red && root->_parent && root->_parent->_col == Red) { cout << "节点连续红色" << endl; return false; }
if (root->_col == Black) num++;
return check(root->_left, reference, num) && check(root->_right, reference, num); }
bool _Inspect(Node* root) { if (_root == nullptr) return true;
if (_root->_col != Black) { cout << "根节点是红色的" << endl; return false; }
size_t leftNum = 0; Node* cur = _root; while (cur) { if (cur->_col == Black) leftNum++; cur = cur->_left; } return check(_root, leftNum, 0); } };
|
三、双红色问题解决原理图
1.叔父同色

2.叔不存在或为黑,单旋

3.叔不存在或为黑,双旋
